Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746185

RESUMEN

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org . Each genome was constructed using a novel assembly tool called Viridian ( https://github.com/iqbal-lab-org/viridian ), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

2.
Nat Microbiol ; 8(12): 2365-2377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996707

RESUMEN

Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Secuenciación de Nanoporos , Niño , Humanos , Preescolar , Plasmodium falciparum/genética , Ghana/epidemiología , Antimaláricos/farmacología , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos/genética
3.
Malar J ; 22(1): 272, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710279

RESUMEN

BACKGROUND: Malaria and schistosomiasis persist as major public health challenge in sub-Saharan Africa. These infections have independently and also in polyparasitic infection been implicated in anaemia and nutritional deficiencies. This study aimed at assessing asymptomatic malaria, intestinal Schistosoma infections and the risk of anaemia among school children in the Tono irrigation area in the Kassena Nankana East Municipal (KNEM) in the Upper East Region of Northern Ghana. METHODS: A cross sectional survey of 326 school children was conducted in the KNEM. Kato Katz technique was used to detect Schistosoma eggs in stool. Finger-prick capillary blood sample was used for the estimation of haemoglobin (Hb) concentration and blood smear for malaria parasite detection by microscopy. RESULTS: The average age and Hb concentration were 10.9 years (standard deviation, SD: ± 2.29) and 11.2 g/dl (SD: ± 1.39) respectively with 58.9% (n = 192) being females. The overall prevalence of infection with any of the parasites (single or coinfection) was 49.4% (n = 161, 95% confidence interval, CI [44.0-54.8]). The prevalence of malaria parasite species or Schistosoma mansoni was 32.0% (n = 104) and 25.2% (n = 82), respectively with 7.7% (n = 25) coinfection. The prevalence of anaemia in the cohort was 40.5% (95%CI [35.3-45.9]), of which 44.4% harboured at least one of the parasites. The prevalence of anaemia in malaria parasite spp or S. mansoni mono-infections was 41.8% and 38.6%, respectively and 64.0% in coinfections. There was no statistically significant difference in the odds of being anaemic in mono-infection with malaria (OR = 1.22, 95% CI 0.71-2.11, p = 0.47) or S. mansoni (OR = 1.07, 95% CI 0.58-1.99, p = 0.83) compared to those with no infection. However, the odds of being anaemic and coinfected with malaria parasite species and S. mansoni was 3.03 times higher compared to those with no infection (OR = 3.03, 95% CI 1.26-7.28, p = 0.013). Conclusion The data show a high burden of malaria, S. mansoni infection and anaemia among school children in the irrigation communities. The risk of anaemia was exacerbated by coinfections with malaria parasite(s) and S. mansoni. Targeted integrated interventions are recommended in this focal area of KNEM.


Asunto(s)
Anemia , Coinfección , Niño , Femenino , Animales , Humanos , Masculino , Schistosoma mansoni , Coinfección/epidemiología , Plasmodium falciparum , Estudios Transversales , Anemia/epidemiología
4.
Microbiol Spectr ; : e0382022, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698406

RESUMEN

Our overall understanding of the developmental biology of malaria parasites has been greatly enhanced by recent advances in transcriptomic analysis. However, most of these investigations rely on laboratory strains (LS) that were adapted into in vitro culture many years ago, and the transcriptomes of clinical isolates (CI) circulating in human populations have not been assessed. In this study, RNA-seq was used to compare the global transcriptome of mid-stage gametocytes derived from three short-term cultured CI, with gametocytes derived from the NF54 reference laboratory strain. The core transcriptome appeared to be consistent between CI- and LS-derived gametocyte preparations, but some important differences were also observed. A majority of gametocyte-specific genes (43/53) appear to have relatively higher expression in CI-derived gametocytes than in LS-derived gametocytes, but a K-means clustering analysis showed that genes involved in flagellum- and microtubule-based processes (movement/motility) were more abundant in both groups, albeit with some differences between them. In addition, gametocytes from one CI described as CI group II gametocytes (CI:GGII) showed gene expression variation in the form of reduced gametocyte-specific gene expression compared to the other two CI-derived gametocytes (CI gametocyte group I, CI:GGI), although the mixed developmental stages used in our study is a potential confounder, only partially mitigated by the inclusion of multiple replicates for each CI. Overall, our study suggests that there may be subtle differences in the gene expression profiles of mid-stage gametocytes from CI relative to the NF54 reference strain of Plasmodium falciparum. Thus, it is necessary to deploy gametocyte-producing clinical parasite isolates to fully understand the diversity of gene expression strategies that may occur during the sequestered development of parasite sexual stages. IMPORTANCE Maturing gametocytes of Plasmodium falciparum are known to sequester away from peripheral circulation into the bone marrow until they are mature. Blocking gametocyte sequestration can prevent malaria transmission from humans to mosquitoes, but most studies aim to understand gametocyte development utilizing long-term adapted laboratory lines instead of clinical isolates. This is a particular issue for our understanding of the sexual stages, which are known to decrease rapidly during adaptation to long-term culture, meaning that many LS are unable to produce transmissible gametocytes. Using RNA-seq, we investigated the global transcriptome of mid-stage gametocytes derived from three clinical isolates and a reference strain (NF54). This identified important differences in gene expression profiles between immature gametocytes of CI and the NF54 reference strain of P. falciparum, suggesting increased investment in gametocytogenesis in clinical isolates. Our transcriptomic data highlight the use of clinical isolates in studying the morphological, cellular features and molecular biology of gametocytes.

5.
Parasit Vectors ; 16(1): 309, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653544

RESUMEN

BACKGROUND: The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS: Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS: Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS: Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Gambia/epidemiología , Ácido N-Acetilneuramínico , Quimotripsina , Ligandos , Tripsina , Malaria Falciparum/epidemiología
6.
Microbiol Spectr ; 11(3): e0491622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37093000

RESUMEN

Malaria treatments resulted in the decline of the deadliest Plasmodium falciparum globally while species, such as P. ovale, infections have been increasingly detected across sub-Saharan Africa. Currently, no experimental drug sensitivity data are available to guide effective treatment and management of P. ovale infections, which is necessary for effective malaria elimination. We conducted a prospective study to evaluate P. ovale epidemiology over 1 year and determined ex vivo susceptibility of the field isolates to existing and lead advanced discovery antimalarial drugs. We report that while P. falciparum dominated both symptomatic and asymptomatic malaria cases, P. ovale in mono or co-infections caused 7.16% of symptomatic malaria. Frontline antimalarials artesunate and lumefantrine inhibited P. ovale as potently as P. falciparum. Chloroquine, which has been withdrawn in Ghana, was also highly inhibitory against both P. ovale and P. falciparum. In addition, P. ovale and P. falciparum displayed high susceptibility to quinine, comparable to levels observed with chloroquine. Pyrimethamine, which is a major drug for disease massive prevention, also showed great inhibition of P. ovale, comparable to effects on P. falciparum. Furthermore, we identified strong inhibition of P. ovale using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drugs currently in clinical phase II testing. We further demonstrated that the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor, KDU691, is highly inhibitory against P. ovale and P. falciparum field isolates. Our data indicated that existing and lead advanced discovery antimalarial drugs are suitable for the treatment of P. ovale infections in Ghana. IMPORTANCE Current malaria control and elimination tools such as drug treatments are not specifically targeting P.ovale. P. ovale can form hypnozoite and cause relapsing malaria. P. ovale is the third most dominant species in Africa and requires radical cure treatment given that it can form liver dormant forms called hypnozoites that escape all safe treatments. The inappropriate treatment of P. ovale would sustain its transmission in Africa where the medical need is the greatest. This is a hurdle for successful malaria control and elimination. Here, we provided experiment data that were lacking to guide P. ovale treatment and disease control policy makers using reference antimalarial drugs. We also provided key experimental data for 2 clinical candidate drugs that can be used for prioritization selection of lead candidate's identification for clinical development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Plasmodium ovale , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Ghana/epidemiología , Estudios Prospectivos , Malaria/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Cloroquina/farmacología , Cloroquina/uso terapéutico
7.
Wellcome Open Res ; 8: 22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864926

RESUMEN

We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website.

8.
Genes (Basel) ; 14(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36833326

RESUMEN

The genetic etiology of non-syndromic hearing impairment (NSHI) is highly heterogeneous with over 124 distinct genes identified. The wide spectrum of implicated genes has challenged the implementation of molecular diagnosis with equal clinical validity in all settings. Differential frequencies of allelic variants in the most common NSHI causal gene, gap junction beta 2 (GJB2), has been described as stemming from the segregation of a founder variant and/or spontaneous germline variant hot spots. We aimed to systematically review the global distribution and provenance of founder variants associated with NSHI. The study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020198573". Data from 52 reports, involving 27,959 study participants from 24 countries, reporting 56 founder pathogenic or likely pathogenic (P/LP) variants in 14 genes (GJB2, GJB6, GSDME, TMC1, TMIE, TMPRSS3, KCNQ4, PJVK, OTOF, EYA4, MYO15A, PDZD7, CLDN14, and CDH23), were reviewed. Varied number short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) were used for haplotype analysis to identify the shared ancestral informative markers in a linkage disequilibrium and variants' origins, age estimates, and common ancestry computations in the reviewed reports. Asia recorded the highest number of NSHI founder variants (85.7%; 48/56), with variants in all 14 genes, followed by Europe (16.1%; 9/56). GJB2 had the highest number of ethnic-specific P/LP founder variants. This review reports on the global distribution of NSHI founder variants and relates their evolution to population migration history, bottleneck events, and demographic changes in populations linked with the early evolution of deleterious founder alleles. International migration and regional and cultural intermarriage, coupled to rapid population growth, may have contributed to re-shaping the genetic architecture and structural dynamics of populations segregating these pathogenic founder variants. We have highlighted and showed the paucity of data on hearing impairment (HI) variants in Africa, establishing unexplored opportunities in genetic traits.


Asunto(s)
Conexinas , Pérdida Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Genotipo , Mutación , Revisiones Sistemáticas como Asunto , Pérdida Auditiva/genética , Transactivadores/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética
9.
Hum Mol Genet ; 32(12): 1946-1958, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36752565

RESUMEN

Recent data suggest that only a small fraction of severe malaria heritability is explained by the totality of genetic markers discovered so far. The extensive genetic diversity within African populations means that significant associations are likely to be found in Africa. In their series of multi-site genome-wide association studies (GWAS) across sub-Saharan Africa, the Malaria Genomic Epidemiology Network (MalariaGEN) observed specific limitations and encouraged country-specific analyses. Here, we present findings of a GWAS of Cameroonian participants that contributed to MalariaGEN projects (n = 1103). We identified protective associations at polymorphisms within the enhancer region of CHST15 [Benjamin-Hochberg false discovery rate (FDR) < 0.02] that are specific to populations of African ancestry, and that tag strong eQTLs of CHST15 in hepatic cells. In-silico functional analysis revealed a signature of epigenetic regulation of CHST15 that is preserved in populations in historically malaria endemic regions, with haplotype analysis revealing a haplotype that is specific to these populations. Association analysis by ethnolinguistic group identified protective associations within SOD2 (FDR < 0.04), a gene previously shown to be significantly induced in pre-asymptomatic malaria patients from Cameroon. Haplotype analysis revealed substantial heterogeneity within the beta-like globin (HBB) gene cluster amongst the major ethnic groups in Cameroon confirming differential malaria pressure and underscoring age-old fine-scale genetic structure within the country. Our findings revealed novel insights in the evolutionary genetics of populations living in Cameroon under malaria pressure with new significant protective loci (CHST15 and SOD2) and emphasized the significant attenuation of genetic association signals by fine-scale genetic structure.


Asunto(s)
Estudio de Asociación del Genoma Completo , Malaria , Humanos , Camerún/epidemiología , Epigénesis Genética , Polimorfismo de Nucleótido Simple/genética , Malaria/epidemiología , Malaria/genética
10.
Sci Rep ; 12(1): 21881, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536036

RESUMEN

Plasmodium malariae, a neglected human malaria parasite, contributes up to 10% of malaria infections in sub-Saharan Africa (sSA). Though P. malariae infection is considered clinically benign, it presents mostly as coinfections with the dominant P. falciparum. Completion of its reference genome has paved the way to further understand its biology and interactions with the human host, including responses to antimalarial interventions. We characterized 75 P. malariae isolates from seven endemic countries in sSA using highly divergent microsatellites. The P. malariae infections were highly diverse and five subpopulations from three ancestries (independent of origin of isolates) were determined. Sequences of 11 orthologous antimalarial resistance genes, identified low frequency single nucleotide polymorphisms (SNPs), strong linkage disequilibrium between loci that may be due to antimalarial drug selection. At least three sub-populations were detectable from a subset of denoised SNP data from mostly the mitochondrial cytochrome b coding region. This evidence of diversity and selection calls for including P. malariae in malaria genomic surveillance towards improved tools and strategies for malaria elimination.


Asunto(s)
Malaria , Plasmodium malariae , Humanos , África del Sur del Sahara , Antimaláricos/uso terapéutico , Malaria/parasitología , Repeticiones de Microsatélite , Plasmodium malariae/genética , Polimorfismo de Nucleótido Simple , Resistencia a Medicamentos/genética
11.
BMC Med Genomics ; 15(1): 237, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357908

RESUMEN

BACKGROUND: Childhood hearing impairment (HI) is genetically heterogeneous with many implicated genes, however, only a few of these genes are reported in African populations. METHODS: This study used exome and Sanger sequencing to resolve the possible genetic cause of non-syndromic HI in a Ghanaian family. RESULTS: We identified a novel variant c.3041G > A: p.(Gly1014Glu) in GREB1L (DFNA80) in the index case. The GREB1L: p.(Gly1014Glu) variant had a CADD score of 26.5 and was absent from human genomic databases such as TopMed and gnomAD. In silico homology protein modeling approaches displayed major structural differences between the wildtype and mutant proteins. Additionally, the variant was predicted to probably affect the secondary protein structure that may impact its function. Publicly available expression data shows a higher expression of Greb1L in the inner ear of mice during development and a reduced expression in adulthood, underscoring its importance in the development of the inner ear structures. CONCLUSION: This report on an African individual supports the association of GREB1L variant with non-syndromic HI and extended the evidence of the implication of GREB1L variants in HI in diverse populations.


Asunto(s)
Pérdida Auditiva , Adulto , Animales , Niño , Humanos , Ratones , Exoma , Secuenciación del Exoma , Ghana , Pérdida Auditiva/genética , Mutación , Linaje , Proteínas/genética
12.
Heliyon ; 8(9): e10440, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36119865

RESUMEN

Background: In sub-Saharan Africa, co-morbidity with malaria, schistosomiasis, and soil transmitted helminths (STH) is common among young children. The current study investigated malaria, urinary schistosomiasis and their co-infection and anemia among school-age children in an endemic community, Nakolo in the Kassena-Nankana East District of northern Ghana. Methods: A cross-sectional survey of 336 school-age children, 5-16 years was undertaken. Urine samples were examined for Schistosoma haematobium ova using microscopy. Finger prick blood samples were examined for Plasmodium parasites using microscopy and haemoglobin concentration measured with HemoCue Hb301 photometer. Results: The mean age was 10.52 (Standard deviation: ±2.27; range: 5-16 years), of which 50.6% (170/336) were males. The overall prevalence of urinary schistosomiasis and Plasmodium (P.) falciparum was 12.8% (43/336) and 37.8% (127/336), respectively with 6.0% (20/336) coinfection. Participants with only P. falciparum infection had 17.8% (19/107) of moderate anemia whilst 21.7% (5/23) of children infected with only S. haematobium had moderate anemia and 4.3% (1/23) had severe anemia. 5.0 % (1/20) of moderate anemia was observed in concurrent infections of P. falciparum and S. haematobium. Use of open water bodies was associated with increased risk of S. haematobium infection (OR = 1.21; 95% CI = [1.06-1.39]; p = 0.001), with females being at reduced risk (OR = 0.93; 95%CI = [0.87-0.99]; p = 0.005). Absence of self-reported haematuria had 0.81 times reduced odds of S. haematobium infection (OR = 0.81; 95%CI = [0.74-0.87]; p < 0.001). Conclusion: This study has revealed that urinary schistosomiasis remains prevalent in Kassena-Nankana East district and suggests that urinary schistosomiasis may contribute to moderate anemia among school-age children as compared to asymptomatic malaria infection. These findings call for an evaluation of the annual mass drug administration of Praziquantel among in-school children to ascertain its impact on urinary schistosomiasis prevalence across the district.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35600674

RESUMEN

High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.

15.
Biology (Basel) ; 11(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35336849

RESUMEN

Gap junction protein beta 2 (GJB2) (connexin 26) variants are commonly implicated in non-syndromic hearing impairment (NSHI). In Ghana, the GJB2 variant p.(Arg143Trp) is the largest contributor to NSHI and has a reported prevalence of 25.9% in affected multiplex families. To date, in the African continent, GJB2-p.(Arg143Trp) has only been reported in Ghana. Using whole-exome sequencing data from 32 individuals from 16 families segregating NSHI, and 38 unrelated hearing controls with the same ethnolinguistic background, we investigated the date and origin of p.(Arg143Trp) in Ghana using linked markers. With a Bayesian linkage disequilibrium gene mapping method, we estimated GJB2-p.(Arg143Trp) to have originated about 9625 years (385 generations) ago in Ghana. A haplotype analysis comparing data extracted from Ghanaians and those from the 1000 Genomes project revealed that GJB2-p.(Arg143Trp) is carried on different haplotype backgrounds in Ghanaian and Japanese populations, as well as among populations of European ancestry, lending further support to the multiple independent origins of the variant. In addition, we found substantial haplotype conservation in the genetic background of Ghanaian individuals with biallelic GJB2-p.(Arg143Trp) compared to the GJB2-p.(Arg143Trp)-negative group with normal hearing from Ghana, suggesting a strong evolutionary constraint in this genomic region in Ghanaian populations that are homozygous for GJB2-p.(Arg143Trp). The present study evaluates the age of GJB2-p.(Arg143Trp) at 9625 years and supports the multiple independent origins of this variant in the global population.

16.
BMC Public Health ; 22(1): 445, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248006

RESUMEN

BACKGROUND: The first case of the novel coronavirus disease-2019 (COVID-19) in West Africa was first confirmed in Nigeria in February 2020. Since then, several public health interventions and preventive measures have been implemented to curtail transmission of the causative agent, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Therefore, this study was performed to assess the knowledge, attitudes, and perceptions of West Africans towards COVID-19. METHODS: An online survey was conducted between 29 September to 29 October 2020 among West Africans. Thirty-three survey questions were designed to collect sociodemographic data and participants' knowledge, attitude and perception towards COVID-19. The study targeted all West African nationals who were 18 years and above, and willing to participate in the study. Participants were either in-country or abroad. RESULTS: Overall, 1106 respondents (≥18 years) from 16 West African countries, with about 12.1% of them residing outside the West African subregion, participated in the survey. The respondents had an average COVID-19 knowledge score of 67.82 ± 8.31, with knowledge of the disease significantly associated with the country of residence (p = 0.00) and marginally (p = 0.05) so with settlement types (i.e., urban, suburban and rural areas). Most respondents (93.4%) could identify the main COVID-19 symptoms, and 73.20% would consult a healthcare professional if infected with SARS-CoV-2. Also, 75.2% of the respondents are willing to receive the COVID-19 vaccine, whereas 10.40% and 14.40% are unwilling and undecided, respectively. Perceptions of what constitute COVID-19 preventive measures were highly variable. Approximately, 8% of the respondents felt that their government responded excellently in managing the pandemic while a third felt that the response was just good. Also, more than half (54%) opined that isolation and treatment of COVID-19 patients is a way of curbing SARS-CoV-2 spread. CONCLUSIONS: Most West Africans have basic knowledge of COVID-19 and showed a positive attitude, with likely proactive practice towards the disease. However, results showed that these varied across countries and are influenced by the types of settlements. Therefore, the health and education authorities in various countries should develop focused measures capturing people in different settlements to improve their preventative measures when designing public health interventions for COVID-19 and any future epidemics or pandemics.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Conocimientos, Actitudes y Práctica en Salud , Humanos , Percepción , Salud Pública , SARS-CoV-2 , Encuestas y Cuestionarios
17.
Int J Parasitol ; 52(11): 721-731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35093396

RESUMEN

Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Adulto , Adolescente , Humanos , Plasmodium falciparum , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/parasitología , Factores de Edad
18.
J Mol Diagn ; 23(10): 1393-1403, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425259

RESUMEN

Plasmodium malariae and Plasmodium ovale are increasingly gaining public health attention as the global transmission of falciparum malaria is decreasing. However, the absence of reliable Plasmodium species-specific detection tools has hampered accurate diagnosis of these minor Plasmodium species. In this study, SYBR Green-based real-time PCR assays were developed for the detection of P. malariae and P. ovale using cooperative primers that significantly limit the formation and propagation of primers-dimers. Both the P. malariae and P. ovale cooperative primer-based assays had at least 10-fold lower detection limit compared with the corresponding conventional primer-based assays. More important, the cooperative primer-based assays were evaluated in a cross-sectional study using 560 samples obtained from two health facilities in Ghana. The prevalence rates of P. malariae and P. ovale among the combined study population were 18.6% (104/560) and 5.5% (31/560), respectively. Among the Plasmodium-positive cases, P. malariae and P. ovale mono-infections were 3.6% (18/499) and 1.0% (5/499), respectively, with the remaining being co-infections with Plasmodium falciparum. The study demonstrates the public health importance of including detection tools with lower detection limits in routine diagnosis and surveillance of nonfalciparum species. This will be necessary for comprehensively assessing the effectiveness of malaria interventions and control measures aimed toward global malaria elimination.


Asunto(s)
Coinfección/diagnóstico , Cartilla de ADN/genética , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Plasmodium malariae/genética , Plasmodium ovale/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adolescente , Adulto , Niño , Preescolar , Coinfección/epidemiología , Coinfección/parasitología , Estudios Transversales , Femenino , Ghana/epidemiología , Humanos , Límite de Detección , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Prevalencia , ARN Ribosómico 18S/genética , Adulto Joven
19.
Wellcome Open Res ; 6: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824913

RESUMEN

MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.

20.
AAS Open Res ; 4: 15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959702

RESUMEN

Community and Public engagement (CE) have gained traction as an ethical best practice for the conduct of genomics research, particularly in the context of Africa. In the past 10 years, there has been growing scholarship on the value and practice of engaging key stakeholders including communities involved in genomics research. However, not much has been documented on how research teams, particularly in international collaborative research projects, are navigating the complex process of engagement including the return of key research findings. This paper is part of a series of papers describing the CE processes used in the AWI-Gen study sites. We describe the key processes of engagement, challenges encountered and the major lessons learned. We pay particular attention to the experiences in returning research results to participants and communities within the Demographic and Health Surveillance site in northern Ghana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...